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Abstract. We study the effective mass and the Landé factor for the three-dimensional as well as
the two-dimensional degenerate electron gas. The influences of specific approximations to the self-
energy and the vertex, equivalently formulated in terms of static and local effective interactions, are
examined, with the aim of developing a legitimate and straightforward description of realistic low-
dimensional semiconductor structures. The results obtained are tested against reference data from
the literature. We further apply the formalism to a Si–SiO2 metal oxide–semiconductor (MOS)
structure and compare the predictions with experiment.

1. Introduction

For the interacting electron gas, recent years have seen substantial progress as regards deriving
highly reliable results from simulations of its response to static external modulations [1–3].
From these a localized effective particle–hole interaction can be extracted. Also, the results on
fundamental properties have been supplemented by ones from updated simulations involving
refined techniques [4–6].

These most accurate results, however, are restricted to three-dimensional (3D) and two-
dimensional (2D) jellium. The description of more realistic systems such as heterostructures
and inversion layers still relies on more elementary approaches such as generalizations of the
random-phase approximation (RPA).

The purpose of this work is to investigate the use of such reasonably simple theoretical
models for calculating two important observables, the effective mass m∗ and the effective
Landé factor g∗, to compare the results with those obtained on the basis of published Monte
Carlo (MC) data, and to test them against highly accurate results available in the literature [5,7].
Furthermore, we apply the formalism to a quasi-2D MOSFET structure in order to compare
the results with experimental data.

Much progress concerning the effective mass in 3D has been made with the use of
effective interactions [8–13] (different approaches are found in references [14, 15]). For 2D
and quasi-2D systems, experiments [16–18] on inversion layers inspired various investigations
[19–24]. Calculations for a GaAs heterostructure [25] and for the strictly 2D system were also
published [26].

In section 2 we discuss the results obtainable with the simplest diagram for the self-
energy, and use state-of-the-art descriptions of the dielectric function in section 3. In section 4
the irreducible particle–hole interaction is better accounted for, and the significance of the
localization procedure is investigated in section 5. Next, spin effects are included and two
routes for modelling the effective interaction are examined (section 6). Section 7 gives a
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critical comparison of the two models. Finally, the application to a realistic MOSFET layer is
presented in section 8.

2. Basic relations

The influence of the Coulomb interaction

v(k) =
{

4πe2/k2 D = 3
2πe2/k D = 2

(1)

on an electron’s effective mass is commonly obtained from the poles of the single-particle
propagator Gσ , defining the quasi-particle excitations Ek . With use of the system’s self-
energy �σ (σ is the spin), one obtains for the relation of the bare mass m to the effective
mass

m

m∗
Ek

= 1 + (m/k)(∂/∂k)�σ (k, ω)

1 − (∂/∂ω)�σ (k, ω)

∣∣∣∣∣
k=kF,ω=Ek=εF

(2)

(where kF and εF denote the Fermi momentum and energy; the usual density parameter rs is
introduced as αrs = kFaB, with aB denoting Bohr’s radius and α = (4/9π)1/3 in 3D and 1/

√
2

in 2D). Also frequently used is the so-called ‘on-shell’ approximation:

m

m∗
os

=
[

1 +
m

k

∂

∂k
�σ (k, ω) +

∂

∂ω
�σ (k, ω)

]
k=kF,ω=εF

. (3)

In diagrammatic language, �σ can be expressed in terms of Gσ , the effective interaction
v(k)/ε(k, ω) (where ε is the dielectric function), and the proper vertex �. The latter is the
solution of an integral equation given by

�(k, ω; q, ε) ≡ 1 +
∑
σ ′

∫
dDk′

(2π)D

∫
dω′

2π i
Gσ ′(k − k′, ω − ω′)Gσ ′(k′, ω′)

Ĩσσ ′(k, ω,k′, ω′; q, ε)�(k′, ω′; q, ε).

(4)

The kernel Ĩσσ ′ is by definition irreducible in the particle–hole channel.
The simplest approach is to replace Ĩσσ ′ by zero. This results in a closed set of equations

that can be solved self-consistently, and is known as the GW -approximation. Most authors,
however, additionally replace the interacting propagator Gσ by its free counterpart G0, and
we prefer to clearly indicate this by denoting the approximation as ‘G0W ’. The self-energy is
then obtained from its RPA expression:

�(k, ω) = −
∫

dDk′

(2π)D

∫
dω′

2π i

v(k′)
ε(k′, ω′)

G0(k − k′, ω − ω′) (5)

where ε = 1 − v�0 is the Lindhard dielectric function [27, 28]. By Wick’s rotation, the
frequency integral can be transformed into two parts, a residual one and a line contribution.
The residual part is given by a one-dimensional integral that is determined by the dielectric
function at zero frequency. For the second part there remain two double integrals which are
determined by the dielectric function on the imaginary axis.

A straightforward improvement of the RPA calculation of m∗ is achieved by including a
so-called ‘local field correction’ G+ in the dielectric function in equation (5):

ε(k, ω) = 1 − v(k)�0(k, ω)

1 + v(k)G+�0(k, ω)
. (6)
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Here, the product vG+ can be understood as a local approximation for the effective particle–hole
interaction Ĩ appearing in equation (4). G+ is conveniently modelled in a modified Hubbard
form [29], which reads (measuring all wave vectors in kF)

G+(k) = AkD−1

2[k2 + AB](D−1)/2
. (7)

The coefficients A,B are fixed according to various limiting conditions (‘sum rules’). The
choice A = 1, B = 1 + (qTF/kF)

D−1 with qTF denoting the Thomas–Fermi wave vector [30]
was suggested by Rice [31]—in order to improve fulfilment of the compressibility sum rule.

Practically any result between the RPA and Hubbard ones can be obtained by suitable
choices of A,B. Hence for a meaningful calculation of m∗ it is important to decide on
appropriate criteria. The integrand of the residual part is restricted to q � 2kF and governed
by the ω = 0 behaviour. Certainly, a proper treatment of the compressibility sum rule

G+(k → 0, ω = 0)
!=

(
k

qTF

)D−1 (
1 − κ0

κ

)
(8)

(where κ(0) denotes the (free) isothermal compressibility of the system) is crucial for this term.
The integrand of the line contribution vanishes rapidly for large q. At 2kF there is

an integrable singularity, where positive and negative contributions mutually cancel. The
important range of wave vectors thus is again the region q ≈ 0–1.5 kF. Therefore an
inappropriate treatment of equation (8) can be expected to lead to sizable errors for this
term also (though we are not aware of any sum rule for imaginary frequencies). We note,
in particular, that Rice’s approach [31] does not fulfil this sum rule (κ is already off by more
than 10% for rs � 3.5 (2.5) in the 3D (2D) case).

The short-range repulsion of the Coulomb interaction leads to the Kimball relation [32,33]

G+(k → ∞)
!= 1 − g(0) (9)

where g(0) is the pair distribution function at zero distance. This requirement is different from
the condition for the static part of a dynamic local field correction [34]:

G+(k → ∞, ω = 0)
!= −2

ρv(k)
"εkin +

{
2/3 (D = 3)

1 (D = 2)

}
(1 − g(0)) + O(k0) (10)

where"εkin denotes the difference between the interacting and free kinetic energies per particle
and ρ is the density. It is seen that here G+ diverges proportionally to kD−1.

The rhs of equations (8), (9) evaluated from MC data for the correlation energy [35, 36]
and ladder summation results for g(0) [37, 38] (denoted by ‘Co + K’) is used to fix A and B.

A final word is in order concerning the comparison between on-shell and renormalized
‘Ek’ mass. Yasuhara and Takada [12] argue that if �σ(k, ω; [G]) is known as a functional of
G0 (instead of G), the first iterative solution is superior to a self-consistent treatment using
the same functional form. We depict both m∗

os and m∗
Ek in figure 1 for our modified Hubbard

approach and the two ‘bounding’ RPA and plain Hubbard results. It is seen that the curves
for the ‘Ek’ masses develop a decreasing slope, whereas the on-shell results rise steeply; they
are found to diverge for rs = 17 (60) for the 3D jellium within the Hubbard approximation
(RPA), and for rs = 5 (20) in 2D (again, within the Hubbard approximation (RPA)). Whereas
in the 3D case this may still provide a reasonable description for the metallic density range, it
is unacceptable for 2D, where rs-values of 20 can be obtained by doping and the application
of gate voltages. Consequently (and although neither m∗

os nor m∗
Ek is conceptually superior),

we present most results for the case of m∗
Ek.
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Figure 1. Comparison between the on-shell and ‘Ek’ effective mass for the 3D (left) and 2D (right)
electron gas. The RPA, Hubbard approximation, and modified Hubbard approximation are given
by the long-dashed, short-dashed, and solid lines, respectively. The on-shell results are marked by
crosses (×). In all four cases the RPA and Hubbard data bracket those of the modified approach.

3. G0W -description based on Monte Carlo results

In order to test the suitability of a local field of the specific analytic form (7) (excluding e.g. any
possible peak structure of G+), we propose to use state-of-the-art local field corrections obtained
from MC simulations.

Moroni et al [2] calculated the static response of 3D jellium to a periodic external
potential for rs = 2, . . . , 10 by diffusion MC studies and thus obtained precise results for
G+(k, ω = 0) ≡ GMCS

+ (k). They found that this quantity is almost completely given by its
asymptotes, i.e. by equation (8) and the k2-term of equation (10). They have also determined
1/ε(k, 0) − 1 for the 2D system [1]. Again, their data can be well reproduced by using
equations (8) and (10) for G+. We have tested that for the 3D system this piecewise-linear
approximation of vG+ versus kD−1 yields only marginal differences for m∗ in comparison with
the fit of reference [2]. Accordingly, this approximation can be trusted for 2D. The integrand
of the residual part is thus very well known.

The calculation of the static structure factor S(k) via the fluctuation-dissipation theorem
is best performed along the imaginary axis:

S(k) = −
∫ ∞

0

dε

ρπ


[
�0(k, iε)

1 − v(k)[1 − G+]�0(k, iε)

]
(11)

involving thus an ‘overall treatment’ of the frequency dependence of G+ analogous to that
of the line term. Since S(k) is well known from simulation studies [4, 6], we propose to
use equation (11) as an alternative for determining the static function GSFD

+ (k). In the actual
computation we have taken S(k) from the Fourier transform of the fit of reference [4] for the
3D case, and from references [6] and [39] for 2D. Unfortunately, for k → 0 (inaccessible
to MC study) these data have rather large statistical uncertainties. Therefore we smoothly
interpolated between the simulated data for k � kF and the small-k behaviour on the basis
of the compressibility sum rule (though, however, S(k → 0) is mostly determined by the



Effective mass of the degenerate electron gas 2011

plasmon dispersion, which is again not exactly known). Improved MC data at (moderately)
long wavelengths would thus be highly desirable.

Thus we now have two static local fields of high quality. For k → ∞, equation (11)
implies the behaviour (9) in contrast to the kD−1-divergence of the MCS results. This leads to
a discrepancy for the data in the intermediate-k regime, reflecting the limitations of a frequency-
independent approach for G+. Noticeable differences between the two MC-based quantities
with the modified Hubbard function are already appearing at around k ≈ 1 kF, a value well
inside the region important for the integration.

The effective masses obtained with both local field corrections are displayed in figure 2
in comparison with the prediction from the modified Hubbard approach. Additionally shown
are reference results from the literature. The 3D values that we use were obtained from the
summation of ring and ladder diagrams in the ‘correlated-basis-function’ formalism [7]; the
2D m∗ was directly obtained in MC studies [5]. The rise of both data with rs is considerably
less steep. Compared to this trend, the deviations of the SFD and MCS data from the modified
Hubbard data are of little significance.
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1.40
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 0  2  4  6  8
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Hubb
Co+K
MCS
SFD
Kro
RiSh

 0  2  4  6  8 10
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Figure 2. The effective mass in the G0W -approach for the state-of-the-art local field corrections.
The SFD results based on S(k) are marked by crosses (×), those obtained using the ω = 0 MCS
data by + symbols. As before, the RPA, Hubbard, and modified Hubbard results are given by
the long-dashed, short-dashed, and solid lines, respectively. The full circles are the results of
Krotscheck [7] for the 3D case and those of Kwon et al [5] for the 2D case. The open circles are
the data from reference [40].

We include in figure 2 the data given by Rietschel and Sham [40], who determined m∗

in the RPA fully self-consistently. It is seen that their data decrease with rs and lie much
lower than the reference values (like the self-consistent data of reference [14]). Accounting
for self-energy insertions thus does not lead to satisfactory results, and two conclusions can
be drawn:

(i) The G0W -approach, even with the most accurate G+, cannot describe the effective mass
satisfactorily. The inclusion of vertex insertions is crucial.

(ii) Given the assumption of the formal dependence of �σ on G+, studies based on a modified
Hubbard approximation provide a good estimate of the resulting m∗, since the basic
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trend of the rs-dependence is the same as for the most sophisticated local fields. This is
important for applications to realistic low-dimensional systems, where no simulation data
are available.

4. Effective interaction

The self-energy and the single-particle propagator are connected by the (q → 0, ε → 0)
limit of exactly the same function Ĩσσ ′ that determines the vertex in equation (4). Vignale and
Singwi [9] proposed a static and local approximation, Ĩσσ ′(|k−k′|), that, together with certain
assumptions concerning the classes of diagrams retained, allows a straightforward calculation
of �σ and thus of the effective mass [10]. A thorough discussion was later given by Yasuhara
and co-workers [12, 13]. The result is very similar to a G0W -expression, equation (5), but
with v/ε replaced by the average effective particle–particle interaction V eff = [V↑↑ + V↑↓]/2
with [9]

V eff(k, ω) = v(k) + {v(k)[1 − G+(k)]}2 �0(k, ω)

1 − v(k)[1 − G+(k)]�0(k, ω)
. (12)

This quantity was first introduced by Overhauser (see [8]), who pointed out that for electrons
with like spins the effective interaction V↑↑ is intrinsically different from the one for particles
with opposite spins, V↑↓.

G+ is identical to the symmetric part of the localized irreducible particle–hole interaction:

v(k)G±(k) ≡ 1

2
[Ĩ↑↑(k) ± Ĩ↑↓(k)] ≡ 1

2
v(k)[G↑↑(k) ± G↑↓(k)] (13)

and the approximations for Ĩσσ ′ that lead to equation (12) differ from the mere inclusion of G+

in � as introduced by Rice [31] (and applied in 2D in references [19,25]). As in section 3, we
use the modified Hubbard form fulfilling equations (8), (9), as well as the two most refined local
fields constructed from available MC data. The results for m∗

Ek (cf. figure 3) now obviously
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Figure 3. The effective massm∗
Ek without spin fluctuations. The notation is the same as for figure 2.
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reproduce the right trend as a function of rs . (This is not the case if G+ is included in Rice’s
way.) Properly accounting for all related diagrams for Ĩσσ ′ is thus crucial. Since G+ enters
� in multiple ways, the ‘order’ of the curves is now reversed. Again it can be said that the
modified Hubbard approximation yields a satisfactory description.

We finally note that m∗
os does not diverge at any value of rs in the whole range that we

investigated (up to rs = 80 in 3D and 2D), indicating that the classes of diagrams are indeed
chosen in a consistent manner. However, m∗

os is found to decrease for values of rs > 25 (10)
in 3D (2D). For the ‘Ek’ mass, this effect is much weaker.

5. Exchange contribution

The diagrams relevant for Ĩσσ ′ consist, to a significant extent, of exchange graphs. As such
effects are intrinsically non-local, the question arises of whether a description based on the
approximation Ĩσσ ′(k, ω,k′, ω′; 0, 0) ≈ Ĩσσ ′(|k − k′|) is reasonable. We have therefore
evaluated the leading exchange correction to the RPA on-shell mass (figure 4).

Figure 4. Leading diagrams of the self-energy. Left: �RPA. Right: the screened second-order
exchange contribution. The single- and the double-dashed lines represent the bare and screened
Coulomb interactions v and v/ε, respectively. The lines with arrows are free Green’s functions.

This diagram can be transformed into a five-dimensional integral (a four-dimensional one
in 2D), which is evaluated numerically. The result is added to the RPA term, the corresponding
sum being shown in figure 5. For comparison we depict the same contribution in the Hubbard
approximation (with appropriately corrected prefactors [13]).

The inclusion of exchange gives a significant deviation from the RPA result; the Hubbard
approximation is noticeably different, but not too far from the non-local result. This shows that
to the order of v2 the localization gives a good answer for the effective mass. Consistently with
the direct contribution, we have estimated the screening by using v(k)/εRPA(k, ω). As is to be
expected, this diminishes the exchange contribution, which nevertheless remains rather large.
Compared to the influence of screening, that of the localization is less important. Therefore
the summation of large classes of diagrams with the help of local field corrections provides a
reasonable working basis.

6. Inclusion of spin fluctuations

The inclusion of spin fluctuations was first studied by Ng and Singwi [10] and has been
thoroughly discussed by Giuliani’s group [24]. The self-energy can again be cast into the form
(5), with the effective potential [10, 11]

V eff = v + {v[1 − G+]}2 �0

1 − v[1 − G+]�0
+ 3{v[G−]}2 �0

1 + vG−�0
. (14)

To the best of our knowledge, no suitable MC data are available for theω-integrated partial
structure factors S↑↑(↓) in 2D; for the ω = 0 spin response function, simulation results [3] exist
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Figure 5. The on-shell effective mass obtained from the diagrams given in figure 4. The long-
dashed line is the RPA without exchange; the results with the unscreened and the dynamically
screened exchange effects included are given by the cross (×) and + symbols, respectively. The
unscreened data should be compared with the leading-order Hubbard result (solid line).

only for rs = 2. We therefore use a modified Hubbard description for both local field factors
G±. The necessary sum rules for G− are given as [41]

G−(k → ∞)
!= g(0) (15)

G−(k → 0)
!=

(
k

qTF

)D−1 (
1 − χ0

M

χM

)
(16)

(the ‘spin-stiffness sum rule’), where χM is the magnetic susceptibility, χ0
M its Pauli value. It

can be obtained from the exchange–correlation energy per particle, εxc, for which, however,
its dependence on the relative magnetization ζ must be known:

1 − χ0
M

χM
= −

{
3/2 (D = 3)

1 (D = 2)

}
(αrs)

2 ∂2εxc (Ryd)

∂ζ 2

∣∣∣∣
ζ=0

. (17)

Finally, we note the identity [30]
χM

χ0
M

= m∗

m

g∗

g
. (18)

It is important to note that the modified Hubbard approximation can now be incorporated
in two different ways. The first is to assume the Hubbard form for the partial quantities in the
spirit of Iwamoto and Pines [42, 43]

GIP
↑↑(k) = A↑↑kD−1

[k2 + A↑↑B↑↑](D−1)/2
(19)

and an analogous form for GIP
↑↓. Alternatively, Yarlagadda and Giuliani suggest [23] applying

the Hubbard form directly to G±:

GYG
± (k) = A±kD−1

2[k2 + A±B±](D−1)/2
. (20)

In both cases the parameters are fixed according to the sum rules (8), (9), (15), (16).
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7. Landé factor

In the presence of an applied magnetic field H the quasi-particle energies for particles with
different spins define the effective Landé factor g∗. From these, the Landau quasi-particle
interaction function fσ,σ ′(k, q) can be obtained as a second functional derivative with respect to
the momentum occupation function. For the case of a generalG0W -form (such as equation (5))
one obtains

fσ,σ ′(k, q) = −V eff(k − q, ω0
k − ω0

q)δσ,σ ′ (21)

where ω0
k = k2/2m denotes the free-single-particle energies. The Landé factor can then be

expressed as [30, 44]

g

g∗ = 1 +
m∗

2π2



kF

∫ +1

−1
dξ fa(ξ) 3D

∫ 2π

0
dφ fa(cosφ) 2D

(22)

with

fa(ξ = cos(φ)) ≡ 1

2
[f↑↑(|k − q|) − f↑↓(|k − q|)]|k|=|q|=kF (23)

(φ denotes the angle between k and q).
We now address the question of which of the two ways of constructing the modified

Hubbard fields accounts best for the many-body aspects of the system. For both methods
one needs information on the spin stiffness ∂2εxc/∂ζ

2|ζ=0, or, equivalently, the magnetic
susceptibility χM. However, the information on εxc(ζ ) is somewhat inconsistent.

For 3D the suggestion given by von Barth and Hedin [45] was shown to be a poor approx-
imation by Vosko et al [36], who gave a fit for the deviation of the spin stiffness αc(rs) from its
RPA value. Later, Perdew and Wang [46] determined a different Padé interpolation for αc(rs).
In contrast to another suggestion by Perdew and Zunger [47], both forms are compatible with
the recent simulations of reference [4]; the data, however, are insufficient for determiningαc(rs)

with confidence. Finally, Tanaka and Ichimaru [48] assume an ansatz for εxc with powers up
to ζ 6; from the energy values obtained for a substantial number of ζ -values in the modified
convolution approximation (‘MCA’), they derived another Padé interpolation for αc(rs). For
the 2D system, Tanatar and Ceperley [35] use a simple form that is quadratic in ζ for either
the correlation or the full energy per particle. Due to the lack of a sufficient number of MC
results at intermediate values of ζ , it appears difficult to decide which of the above is the most
appropriate suggestion.

In order to circumvent these uncertainties, Yarlagadda and Giuliani [23] determined χM

by means of a self-consistent calculation of m∗ and g∗. We follow their suggestion by starting
from either of the expressions (19) and (20), and fix three of the four parameters from the
known values of g(0) and κ . The remaining unknown

1/B− = [1/B↑↑ − 1/B↑↓]

is determined self-consistently, with the use of equations (16) and (18).
Figure 6 shows the resulting inverse magnetic susceptibility in comparison with the

values discussed above. It is seen that χ0
M/χM approaches zero quite rapidly in the YG

approximation—namely, at rs ≈ 10 and 4 in the 3D and 2D cases, respectively. In contrast,
the IP parametrization is stable up to rs ≈ 20 and 9 (again for 3D and 2D). The IP curves are
also much closer to the MC ones. Thus this parametrization appears superior to that of YG.
Our data have been obtained with the use of the ‘Ek’ mass; the on-shell results lie significantly
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Figure 6. Inverse magnetic susceptibility. Dotted curve: the Hartree–Fock result. Symbols: MC
(from reference [36] for 3D and reference [35] for 2D) and MCA results [48]. The double-dashed
line was obtained with the Yarlagadda–Giuliani modified Hubbard form, equation (20), and the
dashed–dotted one with that of Iwamoto and Pines, equation (19).

lower. For the 2D YG this latter choice limits the applicability range to rs � 3. Though this
range of values may be sufficient to cover the experiment of Fang and Stiles (see [16–18]), it is
not acceptable for a description of the full density region that can be realized experimentally.

The vanishing of χ0
M/χM corresponds to a divergence of g∗, where the self-consistency

cycle becomes unstable. Our g∗-results are shown in figure 7 (to the best of our knowledge
this is the first calculation of the Landé factor for the 3D system). We show the values obtained
with either the YG or IP parametrization, calculated self-consistently or with the use of the
best available results for the spin stiffness. Since we do not have reliable MC data beyond
rs = 6 in the 3D case, we used the MCA-based fit of reference [48] (which is very close to the
VWN data, as seen in figure 6). For 2D we took the results derived from εtot by Tanatar and
Ceperley [35]. There is little difference between the self-consistent and the literature-based
YG predictions for g∗, its divergence at rather small rs being clearly visible. For the IP case
the self-consistent procedure yields more reasonable values than that using the MCA- and
MC-based χM. Although these data for χ0

M/χM remain positive up to rs ≈ 19 (the 3D MCA)
and beyond rs = 40 (the 2D MC), respectively, g∗ computed from them diverges at much
smaller values (correspondingly, equation (18) is grossly violated).

The symmetric fields G+ show little difference for YG and IP parametrizations. The anti-
symmetrized local field G− is shown in figure 8 for rs = 2, together with MC simulation data
given by Senatore et al [3]. It is seen that the IP ansatz allows for more structure and agrees
better with the MC points, although its peak appears rather too low.

The values obtained for the effective mass are compared in figure 9 with those calculated
without spin fluctuations. Obviously, the agreement with the reference data of Krotscheck [7]
and Kwon et al [5] has become much poorer, the discrepancy being more pronounced in the
2D case. In contrast to the above findings, the 3D YG results are somewhat better than the IP
results; for 2D neither curve is very satisfactory.
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8. MOS layer

We now compare the IP and YG results for the more realistic case of a MOSFET, for which
experimental values [16–18] are available. All relevant expressions are given in reference [23];
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the extension of the wave function and the presence of the metallic gate are included via an
overall form factor in front of the Coulomb interaction and in the local fields. The degeneracy
nv = 2 of the conduction band valley is also considered.

Figure 10 shows the comparison of the observables obtained with the two choices of
approach: IP and YG. For m∗, both curves lie below the experimental results with the IP
values being marginally closer than the YG values. The use of the on-shell mass (not shown)
shifts the YG results to the extent that they cross the experimental curve—an implausible
behaviour since phonons also contribute to the experimental m∗. The agreement of the YG
prediction with the experimental values for the Landé factor is striking, with the IP results also
lying acceptably close. The comparison with the experiment thus does not favour either of the
two possibilities.

9. Summary

The results for m∗ are dominated by the k → 0 limit of the effective interaction, which is
determined by the compressibility and is thus a macroscopic quantity. By using the best local
fields available at present, constructed from state-of-the-art MC calculations for either ω = 0
or from S(k), we demonstrated the necessity for a consistent treatment of the vertex. This can
be achieved by replacing the interaction v/ε in the G0W -approach with the mean particle–
particle potential. By comparing the full leading-order exchange contribution with that of the
Hubbard approximation, we showed that the underlying localization is justified. When only
charge fluctuations are accounted for in the calculations, the use of our MC-based local field
corrections gives a very close agreement of m∗ with available benchmark results in the 3D
case and a satisfactory one for 2D. We further found that approximating the local fields by a
modified Hubbard form fulfilling the compressibility sum rule and Kimball’s sum rules still
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yields good results form∗. This is of importance, since applications to realistic systems usually
lack the (MC) information available for jellium.

Spin fluctuations formally enter the effective interaction via the local field factor G−. Due
to the lack of suitable information from simulations for the spin quantities, one is restricted to
simple parametrizations; we chose again a modified Hubbard form. The question of whether
this ansatz is better made for the partial functions G↑↑(↓) as introduced by Iwamoto and
Pines [42] or directly for G± as suggested later by Yarlagadda and Giuliani [23] cannot be
decided unambiguously. We found the IP method to be superior as regards self-consistent
results for the magnetic susceptibility χM (and, correspondingly, G−(k → 0)), with respect to
the range of applicability of the approach (limited by the fact that the self-consistent procedure
becomes unstable where 1/χM vanishes), and also as regards the shape of G−. On the other
hand, the YG choice yields somewhat better data for the effective mass. The application of
the formalism to a Si–SiO2 MOSFET gives a reasonable agreement of the YP as well as the
IP results with the experimental data [16–18].

In general it can be stated that the IP ansatz allows for more structure in the local field
factors. Further information concerning this point from MC calculations for G− at various
rs-values would be highly desirable. Also, a better knowledge of the spin stiffness from
simulation studies appears necessary. As a final remark, we note the following: Krakovsky
and Percus [15] report m∗ to be a decreasing function of rs in the 3D case, whereas it increases
for 2D. This is in contrast to our findings, where the same type of approach always yields
similar rs-behaviours for 3D and 2D.
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